Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[cobalt(II)-bis(µ-3,7-dichloroguinoline-8-carboxylato- $\kappa^3 N, O:O'$]

Zequan Li,^a Fengjing Wu,^a Yun Gong,^a* Yunhuai Zhang^a and Chenguang Bai^b

^aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China, and ^bSchool of Materials Science and Engineering, Chongqing University, Chongqing 400044, People's Republic of China

Correspondence e-mail: gongyun7211@yahoo.com.cn

Received 9 December 2007; accepted 13 December 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.089; data-to-parameter ratio = 12.4.

In the crystal structure of the title compound, $[Co(C_{10}H_4Cl_2NO_2)_2]_n$, the Co^{II} cation lies on a twofold rotation axis. Each cation is N,O-chelated by the carboxylate anions of two 3,7-dichloroquinoline-8-carboxylate ligands. The second carboxylate O atom of each ligand coordinates to the Co^{II} cation of an adjacent molecule, linking the cations into a linear chain. Strong interchain π - π stacking interactions are observed in the crystal structure (perpendicular distance 3.42 Å, centroid-to-centroid distance 3.874 Å)

Related literature

For the use of 3,7-dichloro-8-quinolinecarboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related vanadium and cadmium complexes, see Chen et al. (2001); Yang et al. (2005). For related literature, see: Turel et al. (2004); Zhang et al. (2007).

Experimental

Crystal data

$[Co(C_{10}H_4Cl_2NO_2)_2]$	V = 1987.7 (5) Å ³
$M_r = 541.01$	Z = 4
Orthorhombic, Pccn	Mo $K\alpha$ radiation
a = 13.5109 (14) Å	$\mu = 1.43 \text{ mm}^{-1}$
b = 15.964 (2) Å	T = 298 (2) K
c = 9.2157 (16) Å	$0.49 \times 0.33 \times 0.31 \text{ mm}$

Data collection

Siemens SMART CCD 9558 measured reflections area-detector diffractometer 1752 independent reflections Absorption correction: multi-scan 1404 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 1996) $R_{\rm int}=0.039$ $T_{\rm min} = 0.57, \ T_{\rm max} = 0.64$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	141 parameters
$vR(F^2) = 0.089$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
752 reflections	$\Delta \rho_{\rm min} = -0.76 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-O1 Co1-O2 ⁱ	2.093 (2) 2.057 (2)	Co1-N1	2.197 (2)
$\begin{array}{l} D2^{i} - Co1 - O2^{ii} \\ D2^{i} - Co1 - O1 \\ D2^{ii} - Co1 - O1 \\ D1 - Co1 - O1^{iii} \\ D2^{i} - Co1 - N1 \end{array}$	103.60 (12) 170.96 (9) 85.43 (8) 85.55 (12) 90.97 (9)	02^{ii} -Co1-N1 O1-Co1-N1 O1 ⁱⁱⁱ -Co1-N1 N1 ⁱⁱⁱ -Co1-N1	87.24 (9) 89.82 (9) 92.31 (9) 177.10 (14)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y, z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, -y + \frac{3}{2}, z$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Young Scholars Foundation of Chongqing University and Chongqing University Postgraduate Science and Innovation Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2456).

References

- Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35-37.
- Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171-175.
- Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109-1115.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597-606.
- Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73-78.
- Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239-401.
- Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120-121.
- Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.

supplementary materials

Acta Cryst. (2008). E64, m227 [doi:10.1107/S1600536807066755]

catena-Poly[cobalt(II)-bis(μ -3,7-dichloroquinoline-8-carboxylato- $\kappa^3 N, O:O'$)]

Z. Li, F. Wu, Y. Gong, Y. Zhang and C. Bai

Comment

Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H₂O)(4quinolinecarboxylato)₂ (Chen *et al.*, 2001; Yang *et al.*, 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a most effective herbicides (Nuria *et al.*, 1997; Pornprom *et al.*, 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). We have reported a nickel-quinclorac complex in our previous work (Zhang *et al.*, 2007). The title compound is a cobalt(II) derivative (I) (Fig. 1) with the Co^{II} cation located on a twofold rotation axis. The Co^{II} center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. Each quinclorac ligand chelates to the cobalt atom *via* a quinoline N atom and a carboxylate O atom. Adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by strong offset face-to-face π - π stacking interactions (perpendicular distance: 3.42 Å, centroid-centroid distance: 3.874 Å) between the C2–C7 and C2ⁱ–C7ⁱ benzene rings [symmetry code: (i) 2 - *x*, 1 - *y*, - *z*].

Experimental

A mixture of quinclorac (0.5 mmol, 0.121 g), $CoCl_2.6H_2O$ (1 mmol, 0.238 g), $Na_2MoO_4.2H_2O$ (0.5 mmol, 0.121 g) and H_2O (10 ml) was treated with aqueous HCl to a pH of 5. The mixture was placed in a Teflon-lined autoclave; this was heated at 403 K for three days. Red crystals were collected and washed with water. C H & N elemental analysis. Calculated for $C_{20}H_8Cl_4N_2O_4Co$: C 44.36, H 1.48, N 5.18%; found: C 44.48, H 1.69, N 5.31%. Selected FT—IR (KBr, cm⁻¹): 3301(w), 1581(s), 1553(m), 1482(m), 1402(m), 1383(s), 1232(m), 1139 (m), 1101(s), 761(m), 553(m), 449(m).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity [Symmetry code: (i) x,-y + 1/2, z + 1/2.]

Fig. 2. Three dimensional supramolecular architecture constructed by interchain π - π stacking interactions.

catena-Poly[cobalt(II)-bis(μ -3,7-dichloroquinoline-8-carboxylato- $\kappa^3 N$,O:O')] ?

 $F_{000} = 1076$

 $D_{\rm x} = 1.808 {\rm Mg m}^{-3}$

 $D_{\rm m} = 1.800 {\rm Mg m}^{-3}$

Mo Kα radiation

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.0 - 25.0^{\circ}$

 $\mu = 1.43 \text{ mm}^{-1}$

T = 298 (2) K

 $0.49 \times 0.33 \times 0.31 \text{ mm}$

Block, red

 $D_{\rm m}$ measured by not measured

Cell parameters from 9558 reflections

Crystal data

[Co(C10H4Cl2NO2)2]

 $M_r = 541.01$

Orthorhombic, Pccn

Hall symbol: -P 2ab 2ac *a* = 13.5109 (14) Å *b* = 15.964 (2) Å *c* = 9.2157 (16) Å $V = 1987.7 (5) \text{ Å}^3$ Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer	1752 independent reflections
Radiation source: fine-focus sealed tube	1404 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 13$
$T_{\min} = 0.57, \ T_{\max} = 0.64$	$k = -18 \rightarrow 18$
9558 measured reflections	$l = -10 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site lo
Least-squares matrix: full	Hydrogen site location: sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters cor
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.02)]$ where $P = (F_o^2 + 2F_c^2)$
<i>S</i> = 1.11	$(\Delta/\sigma)_{max} = 0.001$
1752 reflections	$\Delta\rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
141 parameters	$\Delta \rho_{min} = -0.76 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: 1

ocation: difference Fourier map : inferred from neighbouring nstrained $(291P)^2 + 3.6236P$)/3

none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.7500	0.7500	0.25905 (6)	0.02337 (17)
Cl1	0.77826 (7)	0.45967 (6)	-0.08682 (10)	0.0438 (3)
C12	1.11100 (8)	0.71113 (7)	0.54570 (14)	0.0641 (4)
N1	0.89374 (19)	0.68581 (16)	0.2651 (3)	0.0271 (6)
01	0.70392 (16)	0.66997 (13)	0.0924 (2)	0.0296 (5)
O2	0.80139 (16)	0.65857 (13)	-0.1029 (2)	0.0287 (5)
C1	0.7764 (2)	0.64027 (19)	0.0240 (3)	0.0253 (7)
C2	0.8430 (2)	0.57762 (19)	0.0989 (3)	0.0254 (7)
C3	0.8519 (2)	0.4963 (2)	0.0541 (4)	0.0305 (7)
C4	0.9198 (3)	0.4403 (2)	0.1170 (4)	0.0406 (9)
H4	0.9214	0.3846	0.0871	0.049*
C5	0.9831 (3)	0.4674 (2)	0.2212 (4)	0.0405 (9)
H5	1.0300	0.4309	0.2594	0.049*
C6	0.9783 (2)	0.5510(2)	0.2723 (4)	0.0325 (8)
C7	0.9051 (2)	0.60506 (19)	0.2140 (3)	0.0273 (7)
C8	0.9570 (2)	0.7133 (2)	0.3621 (4)	0.0325 (8)
H8	0.9503	0.7681	0.3949	0.039*
C9	1.0338 (2)	0.6646 (2)	0.4188 (4)	0.0378 (8)
C10	1.0438 (3)	0.5835 (2)	0.3773 (4)	0.0397 (9)
H10	1.0929	0.5499	0.4175	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0269 (3)	0.0247 (3)	0.0185 (3)	0.0027 (3)	0.000	0.000
Cl1	0.0472 (5)	0.0369 (5)	0.0472 (6)	-0.0042 (4)	-0.0028 (4)	-0.0106 (4)
Cl2	0.0561 (6)	0.0563 (7)	0.0799 (8)	0.0064 (5)	-0.0383 (6)	-0.0098 (6)
N1	0.0271 (14)	0.0274 (14)	0.0268 (15)	0.0037 (11)	-0.0010 (11)	0.0010 (11)
01	0.0316 (12)	0.0338 (12)	0.0233 (12)	0.0062 (10)	-0.0014 (10)	-0.0035 (10)
O2	0.0344 (12)	0.0307 (12)	0.0211 (12)	0.0016 (10)	0.0015 (9)	0.0020 (10)
C1	0.0322 (17)	0.0217 (15)	0.0220 (16)	-0.0028 (12)	-0.0030 (13)	0.0000 (12)
C2	0.0258 (16)	0.0285 (16)	0.0218 (16)	0.0024 (13)	0.0053 (13)	0.0052 (13)

supplementary materials

C3	0.0331 (17)	0 0261 (17)	0.0323 (18)	-0.0021(14)	0 0046 (14)	0.0002(14)
C4	0.051 (2)	0.0242 (18)	0.047 (2)	0.0059 (16)	0.0032 (19)	-0.0001(16)
C5	0.042 (2)	0.0340 (19)	0.045 (2)	0.0122 (16)	-0.0004 (17)	0.0073 (17)
C6	0.0332 (18)	0.0330 (18)	0.0311 (19)	0.0051 (14)	0.0012 (14)	0.0049 (15)
C7	0.0266 (16)	0.0289 (17)	0.0264 (17)	0.0044 (13)	0.0070 (13)	0.0044 (14)
C8	0.0292 (17)	0.0315 (18)	0.037 (2)	0.0018 (14)	-0.0010 (15)	0.0008 (15)
C9	0.0306 (18)	0.042 (2)	0.041 (2)	0.0018 (15)	-0.0088 (16)	-0.0023 (17)
C10	0.0337 (19)	0.045 (2)	0.040 (2)	0.0106 (16)	-0.0065 (16)	0.0053 (18)
Geometric paran	neters (Å, °)					
Co1—O1		2.093 (2)	C2-	С3	1.368	(4)
Co1—O1 ⁱ		2.093 (2)	C2-	C7	1.422	(4)
Co1—O2 ⁱⁱ		2.057 (2)	C3-	C4	1.406	(5)
Co1—O2 ⁱⁱⁱ		2.057 (2)	C4-	C5	1.357	(5)
Co1—N1 ⁱ		2.197 (2)	C4-	H4	0.9300)
Co1—N1		2.197 (2)	C5-	C6	1.416	(5)
Cl1—C3		1.738 (3)	C5-	-H5	0.9300)
Cl2—C9		1.734 (4)	C6-	C10	1.410	(5)
N1—C8		1.312 (4)	C6-	C7	1.419	(4)
N1—C7		1.381 (4)	C8-		1.398	(5)
01—C1		1.257 (4)	C8-	-H8	0.9300	(5)
02—C1		1.252 (4)	C9-	-010	1.358	(5)
$O2-Col^{11}$		2.057 (2)	C10	—H10	0.9300	
CI—C2		1.512 (4)			110.0	
02 ¹¹ —Co1—O2 ¹¹¹		103.60 (12)	C/-		119.2 ((3)
02 ¹¹ —Co1—O1		170.96 (9)	C2-	-C3C4	122.5	(3)
O2 ¹¹¹ —Co1—O1		85.43 (8)	C2-	C3Cl1	119.6	(3)
$O2^{11}$ —Co1—O1 ¹		85.43 (8)	C4-	-C3Cl1	117.9	(3)
$O2^{iii}$ —Co1—O1 ⁱ		170.96 (8)	C5-	C4C3	120.0	(3)
O1—Co1—O1 ⁱ		85.55 (12)	C5-	C4H4	120.0	
O2 ⁱⁱ —Co1—N1 ⁱ		87.24 (9)	C3-	C4H4	120.0	
O2 ⁱⁱⁱ —Co1—N1 ⁱ		90.97 (9)	C4-	C5C6	120.5	(3)
O1—Co1—N1 ⁱ		92.31 (9)	C4-	—С5—Н5	119.8	
O1 ⁱ —Co1—N1 ⁱ		89.82 (9)	C6-	—С5—Н5	119.8	
O2 ⁱⁱ —Co1—N1		90.97 (9)	C10		123.1	(3)
O2 ⁱⁱⁱ —Co1—N1		87.24 (9)	C10	—C6—C7	118.3	(3)
O1—Co1—N1		89.82 (9)	C5-	C6C7	118.6	(3)
O1 ⁱ —Co1—N1		92.31 (9)	N1-	—С7—С6	121.1	(3)
N1 ⁱ —Co1—N1		177.10 (14)	N1-	C7C2	118.5	(3)
C8—N1—C7		118.2 (3)	C6-	—С7—С2	120.5	(3)
C8—N1—Co1		115.9 (2)	N1-		123.5	(3)
C7—N1—Co1		121.7 (2)	N1-	—С8—Н8	118.2	
C1		111.49 (19)	С9-		118.2	
C1—O2—Co1 ^{iv}		130.7 (2)	C10	—C9—C8	119.9	(3)

$0^{2}-C^{1}-0^{1}$	126.2 (3)	C10-C9-C12	122 6 (3)
02 01 01	120.2(3)	C°_{10} C°_{12} C°_{12}	122.0(3)
02 - 01 - 02	114.9 (3)		117.4 (3)
01	119.0 (3)	09-010-06	118.8 (3)
C3—C2—C7	117.8 (3)	C9—C10—H10	120.6
C3—C2—C1	122.9 (3)	С6—С10—Н10	120.6
O2 ⁱⁱ —Co1—N1—C8	9.9 (2)	Cl1—C3—C4—C5	176.0 (3)
O2 ⁱⁱⁱ —Co1—N1—C8	-93.6 (2)	C3—C4—C5—C6	3.0 (5)
O1—Co1—N1—C8	-179.1 (2)	C4—C5—C6—C10	-178.1 (4)
O1 ⁱ —Co1—N1—C8	95.4 (2)	C4—C5—C6—C7	1.0 (5)
O2 ⁱⁱ —Co1—N1—C7	166.4 (2)	C8—N1—C7—C6	4.7 (4)
O2 ⁱⁱⁱ —Co1—N1—C7	62.8 (2)	Co1—N1—C7—C6	-151.2 (2)
O1—Co1—N1—C7	-22.7 (2)	C8—N1—C7—C2	-174.0 (3)
O1 ⁱ —Co1—N1—C7	-108.2 (2)	Co1—N1—C7—C2	30.1 (4)
01 ⁱ —Co1—O1—C1	68.44 (19)	C10—C6—C7—N1	-4.1 (5)
N1 ⁱ —Co1—O1—C1	158.1 (2)	C5—C6—C7—N1	176.6 (3)
N1—Co1—O1—C1	-23.9 (2)	C10—C6—C7—C2	174.5 (3)
Co1 ^{iv} —O2—C1—O1	8.1 (5)	C5—C6—C7—C2	-4.8 (5)
Co1 ^{iv} —O2—C1—C2	-170.54 (19)	C3—C2—C7—N1	-177.0 (3)
Co1-01-C1-02	-109.2 (3)	C1—C2—C7—N1	7.7 (4)
Co1-01-C1-C2	69.4 (3)	C3—C2—C7—C6	4.4 (4)
O2—C1—C2—C3	-65.8 (4)	C1—C2—C7—C6	-170.9 (3)
O1—C1—C2—C3	115.4 (3)	C7—N1—C8—C9	-1.4 (5)
O2—C1—C2—C7	109.2 (3)	Co1—N1—C8—C9	155.8 (3)
O1—C1—C2—C7	-69.6 (4)	N1-C8-C9-C10	-2.3 (6)
C7—C2—C3—C4	-0.3 (5)	N1-C8-C9-Cl2	179.7 (3)
C1—C2—C3—C4	174.8 (3)	C8—C9—C10—C6	2.8 (6)
C7—C2—C3—Cl1	-179.7 (2)	Cl2—C9—C10—C6	-179.4 (3)
C1—C2—C3—Cl1	-4.6 (4)	C5—C6—C10—C9	179.5 (4)
C2—C3—C4—C5	-3.4 (5)	C7—C6—C10—C9	0.4 (5)
Symmetry codes: (i) $-x+3/2, -y+3/2, z$;	(ii) x , $-y+3/2$, $z+1/2$; (iii) -	x+3/2, y, $z+1/2$; (iv) x, $-y+3/2$, $z-1/2$.	~ /

Fig. 1

Fig. 2